Effects of simulation parameters on residual stresses for laser shock peening finite element analysis
نویسندگان
چکیده
By using finite element analysis, we proposed an applicable finite element method of laser shock peening (LSP) and discussed various parameters, such as solution time, stability limit, dynamic yield stress, peak pressure, pressure pulse duration, laser spot size, and multiple LSP. The effects of parameters related to the finite element simulation of the LSP process on the residual stresses of 35CD4 30HRC steel alloy are discussed. Parametric sensitivity analyses were performed to establish the optimum processing variables of the LSP process. In addition, we evaluated the effects of initial residual stress, such as welding-induced residual stress field.
منابع مشابه
Study of anisotropic character induced by microscale laser shock peening on a single crystal aluminum
The beam spot size used in microscale laser shock peening is of the same order as grain size in many materials. Therefore, the deformation is induced in only a few grains so that it is necessary to treat the material as being anisotropic and heterogeneous. In order to investigate the corresponding anisotropic features, different experimental techniques and three-dimensional finite element simul...
متن کاملExperimental and Numerical Investigation of Laser Assisted PC to Polycarbonate Welding
Laser welding is a novel method for direct joining of metals and polymers, which leads to a mechanical and chemical bond between metal and polymer. In this study, feasibility of dissimilar joining between St12 and polycarbonate is studied theoretically. Then, the ND: YAG laser is implemented to join St12 and Polycarbonate. Empirical results indicate creation of a joint between St12 and polycarb...
متن کاملExperimental and Numerical Investigation of Laser Assisted PC to Polycarbonate Welding
Laser welding is a novel method for direct joining of metals and polymers, which leads to a mechanical and chemical bond between metal and polymer. In this study, feasibility of dissimilar joining between St12 and polycarbonate is studied theoretically. Then, the ND: YAG laser is implemented to join St12 and Polycarbonate. Empirical results indicate creation of a joint between St12 and polycarb...
متن کاملMassive parallel laser shock peening: Simulation, analysis, and validation
Laser shock peening (LSP) is a transient process with laser pulse duration time on the order of 10 ns, real time in situ measurement of laser/material interaction is very challenging. LSP is usually performed in a massively parallel mode to induce uniform compressive residual stress across the entire surface of the workpiece. The purpose of this paper is to investigate the effects of parallel m...
متن کاملAnalytical solution of anisotropic plastic deformation induced by micro-scale laser shock peening
Laser shock peening (LSP) is a process to improve material fatigue life by introducing compressive residual surface stress in a target. The residual stresses are introduced when a high-intensity laser impinges on an ablative layer deposited on the surface of the target material. The interaction between laser and the ablative layer creates a high pressure plasma that leads to plastic deformation...
متن کامل